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Abstract

This paper describes the methodology for usage of
Bayesian Belief Networks (BBNs) in fault detection for
aircraft gas turbine engines. First, the basic theory of
BBNs is discussed, followed by a discussion on the
application of this theory to a specific engine. In
particular, the selection of faults and the means by which
operating regions for the BBN system are chosen are
analyzed. This methodology is then illustrated using the
GE CFM56-7 turbofan engine as an example.

1. Introduction

Current methods for fault identification in aircraft gas
turbine engines involve post-flight ground based trending
schemes to evaluate the general fitness and condition of
the engines. These trending techniques follow the
historical trends of selected parameters to evaluate the
condition of the engine. However, the effectiveness of
these methods is dependent upon the speed with which
these trending procedures can be accomplished. In the
ideal case, trend data would be analyzed and faults
identified following each flight. Identified faults could
then be corrected prior to the next flight. The labor-
intensive nature of the trending procedure prevents this
from occurring and the ideal case is rarely obtained.
Furthermore, even when trending data identifies a large
step change in engine parameters, identification and
isolation of the underlying fault is often a difficult and
time consuming process.

This difficulty in fault identification is compounded by
the fact that, in a complex system such as a jet engine,
engine parameters are often affected by multiple systems.
For example, a large increase in the specific fuel
consumption of an engine could be caused by damage in
any one of several parts of the engine. That is, there are
no simple rules of the type “If parameter j increases by
2%, fault k is the cause.” This level of uncertainty can
lead to many hours of visual inspections in an effort to
identify faults. The man-hours involved in such an
exhaustive search are both costly and inefficient.

The advent of several new techniques in fault
identification leads to a method capable of handling the
associated uncertainty in these events. Some of the
methods currently being investigated include use of
wavelets', use of engine behavior models®?, and analysis -
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of fault signatures using transient data*. The use of BBNs
offers a means by which fault identification in gas turbine
engines may be accomplished in a timely and efficient
manner. BBNs operate by treating changes in engine outputs
as random variables. These random variables can then be
associated in a probabilistic sense with the underlying faults.
This method allows the uncertainties inherent in the system to
be absorbed into the conditional probabilities of the BBNs.
Using this method, faults can be quickly identified and
corrected prior to the next flight. This paper will focus on the
use of BBNs to detect faults in a specific engine, the GE
CFM56-7 turbofan. B

2. Bayesian Belief Networks

BBNss offer a method for describing systems where causal
relationships exist between events, but deterministic
relationships cannot be obtained.>® This is very much the
situation which occurs in modern jet engines. Engine outputs
are affected by many factors such as the overall health of the
engine, the current operating conditions, the condition of the
sensors, and the interdependencies of various subsystems.
Because of the uncertainty created by these interdependent
factors, it is very difficult to match a step change in output
parameters with its corresponding fault. However, if the
occurrence of these parameter changes are treated as random
variables, the relationships between the underlying faults and
the output parameter changes are described by a probabilistic
relation. When handled in this manner, BBNs can offer
significant advantages over traditional methods of fault
isolation.

BBNs operate on the underlying principle of Bayes’
Theorem. When the probability of event X occurring is
written as P(X) and the conditional probability of event X
occurring given that event Y has already occurred is written
as P(XIY), Bayes’ Theorem can be written in the following
manner:

P(BIA)P(A)

P(AIB) =
P(B)

In this case, the event A denotes a particular fault and the
event B is a step change in a certain engine output. If the
conditional probabilities of the fault which causes a certain
step change and the a priori probability of that fault
occurring are known, it is possible to calculate the probability
of that fault having occurred based on the occurrence of a
step change in engine output. In this manner, one can
identify, with some probability, the type of fault which has
occurred based on the knowledge of the engine step output
changes.
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Figure 1 - Example of BBN system used for fault detection

Belief networks are actually a compact visual
representation of the complete set of conditional relations
between faults and their corresponding set of indicator
changes. They take the form of a cause and effect
mapping between root causes (faults) and the associated
symptoms (indicator changes). When designing BBNG, it
is important to identify the appropriate faults and
indicator changes in the specific system. Next the
engineer must transfer his knowledge of the system and
the associated uncertainties into the conditionally
probabilistic structure of the BBN. Through this process,
the BBN becomes, in a sense, an expert system. However,
unlike some expert systems, no learning is done.

The complete specification of a BBN network involves
the identification of the probabilities associated with each
event and the overall structure of the BBN. In this
instance, the BBNs are of the form shown in Figure 1.

The simple example of Figure 1 illustrates one fault
and the associated changes in indicator values. The root
cause fault is associated with an a priori fault probability.
This probability defines the likelihood that a certain fault
will occur based upon historical field data or the
engineer’s knowledge of the system. The links between
the nodes in the BBN are the associated conditional
probabilities. In this example, with a 0.9 probability, the
occurrence of fault 1 will cause a loss in fan efficiency.
This type of conditional probability can be used to
incorporate any type of uncertainty associated with either
measurement errors or unknown engine dynamics. The
specification of this conditional probability is described
later.

The loss in fan efficiency then gives rise to three
changes in indicator values. Likewise, these changes have
conditional probabilities associated with them. Suppose,
for example, that one is very confident that a loss in fan

efficiency will produce a small rise in the MO indicator. It is
therefore assigned a very high probability of 0.9. However,
perhaps due to lack of confidence in the associated sensor,
much less confidence is associated with the fact that a large
fall in MO2 will occur. Therefore, this indicator is only
assigned a probability of 0.65. It is in situations exactly such
as this that BBNs prove their worth. In any type of rule-based
system, a confidence level of 0.65 would be so low that it
could not be used in the system. Although this indicator may
not be a reliable means of indicating the fault by itself, it does
contain some information that may be useful. BBNs provide
a means of extracting some information from these indicators
that could not be used otherwise.

In actual implementation, the uppermost level of
indicators are set to Boolean TRUE and FALSE values. The
BBN structure is then used to calculate the conditional
probabilities associated with each fault. One can then say
with some confidence level that a certain fault has occurred
based upon the given set of indicator changes. Not only does
the belief network provide a means of identifying the fault
which has occurred, but its very structure provides a means
by which one can talk about the confidence level associated
with the fault identification.

3. Fault Selection

One difficulty with the use of BBNs in fault detection is
that, unlike rule-based systems or neural networks, it is not
possible to identify a fault for which the system has not been
designed. That is, there is no ‘“unidentified fault”
classification which can be used to show that the engine is
operating abnormally for reasons unknown. Moreover, BBNs
possess no learning capabilities (so “training” of the system is
not an issue). Therefore, care must be taken in the early



stages of the design process to identify all possible fault
types that will reasonably occur.

In the example of the GE CFM56-7 engine, historical
data had been used to identify the possible types of faults
experienced during normal operations. The possible fault
categories identified by an extensive GE survey were:

e Bird strikes and foreign object damage to fan blades

Variable bleed valve leakage

High pressure compressor damage

High pressure turbine damage

High pressure turbine clearance control valve fault

Low pressure turbine damage

Low pressure turbine clearance control valve fault

Transient bleed valve fault

CDP bleed valve leakage
In addition to these nine identified fault areas,
additional faults were added to correct for the magnitude
differences which could occur within a single fault
category. For example, a small bird impacting the center
of the fan will have a much different effect and
subsequent fault signature than that arising from a large
bird hitting the fan on the outer edge. To correct for these
differences, magnitude levels were added in the
appropriate categories (e.g. small, medium and large bird
strike) to differentiate between these occurrences. This
brought the total number of faults to sixteen. It is on this
set of sixteen faults that all subsequent results are based.
It should be noted again that, unlike a rule-based system,
no data will be given for “untrained” faults. All probable
faults have been accounted for in the initial building
stage.

4. Operating Regions

Before discussing the actual construction of the belief
networks, the operating space of the engine must first be
defined. The inputs to the engine simulation make up
what is referred to as the engine’s operating space. This
four-dimensional space defines the region over which the
engine simulation can operate. The four axes of this space
are altitude, mach number, throttle angle and ambient
temperature. Ideally, the final fault identification scheme
could correctly identify faults from any point within this
space. However, the initial tests were limited to those
regions where the engine will actually be operated. This
reduces the complexity of the systems and allows the
design to be concentrated within those areas of the space
where the actual engine will be used. Based upon actual
engine data, three distinct sections of the operating space
were chosen for identification. The regions are defined as
shown in Table 1. Notice that in the specifications in
Table 1, no value is given for the ambient temperature
value. During the initial design stages, the decision was
made to allow the temperature to be held at that of the
standard day. For all subsequent listed operating
conditions, assume the ambient temperature to be that of a
standard day.

Table 1: Flight regions within the operating space

Flight Throttle
Phase Altitude Mach Ang.

Takeoff 0 -2000 0.22-0.30| 68-78
Climb | 2000-27000 | 0.30-0.80} 72-74
Cruise |27000-39000|0.77-0.80| 60-62

5. Design of BBNs for the CFM56-7

To design a BBN fault identification system for a specific
application, several items must be defined. First, each fault to
be identified must be determined and an a priori probability
must be assigned to each. The a priori probabilities are
needed to indicate the likelihood that any one problem will
occur before a specific set of data is analyzed. In the context
of Bayes’ rule, these probabilities are the P(A) probabilities
that must be known in advance to calculate the desired
conditional outputs. Second, the overall structure of the BBN,
defined by the indicators to be chosen, must be selected. This
structure will determine the method of use for the BBN and
the size of the actual working system. Finally, the conditional
probabilities linking each root cause to the indicators must be
determined.

In the CFM56-7 example, a priori probabilities for each
fault were assigned based upon historical data collected over
the course of a year from an engine model similar to the
CFM56-7. A similar engine model was used because the
CFM56-7 is a relatively new application and sufficient field
data has not yet been collected. This data represents
approximately 1,000,000 flight hours for the engines in
question.

The standard set of sensors for this engine is comprised of
two speed sensors that measure rotational speed of the
engine, four temperature sensors in various locations on the
engine and three pressure sensors. Of these nine standard
sensors, eight proved to be useful in fault identification (the
ninth, speed of the main fan, was not useful due to the fact
that it was the controlled variable in the engine).

In this particular use of BBNs for fault identification,
inputs to the belief network are always in the form of
Boolean variables. That is, the upper level indicators are
determined to be either TRUE or FALSE. To reduce the
analog engine model outputs to Boolean inputs to the BBNSs,
magnitude levels and direction changes for each parameter
were defined. For example, changes in the level of one of the
model outputs were classified as small, medium, and large. In
addition to these magnitude levels, directions were added to
indicate whether the change was a rise or fall in the
magnitude of the model output. This specific magnitude level
classification created a BBN structure with 16 faults and 36
upper level indicators. In addition, there were 16 mid-level
nodes which corresponded to internal changes within the
engine due to each given fault. Under this scheme, any
change in the levels of the model outputs of interest can be
classified as a Boolean event and entered into the BBN.



With the indicator limits thus defined, it is possible to
assign conditional probabilities to each of the events in
the BBN. This was done by using computer simulations
of the engine model and observing the effects of the faults
on the model outputs in question. For example, a small
bird strike was simulated using the engine model. From
this simulation, it was observed that SENT1 rose. Since the
amount of the SEN1 rise was directly in the center of the
small rise band, the conditional probability on that
indicator would be very high. For the purposes of this
example, a probability of 0.95 was assigned. That is, since
the value of the indicator was in the center of the
magnitude band, a very high confidence level was
assigned to the fact that, even with some uncertainty, the
final value would still be within that band. Alternately, if
the value fell near the edge of the magnitude band, a
lower value of 0.6 might be chosen to show that
confidence level in that indicator was not as high. If a
model output value fell very near to the border between
two of the magnitude bands, both adjacent indicators were
given non-zero probabilities to cover the possibility that
small uncertainties could place the actual value in either
band. On any nonadjacent magnitude bands, the
probabilities were set to zero to indicate that the actual
indicator values would never vary into these bands.

These simulations were run for each of the 16 faults
and values were obtained for the six model outputs in
each simulation. Using this data, and the a priori data
obtained above, a complete set of BBNs was constructed.
In other words, the BBNs were completely defined by the
choice of structure and the calculated probabilities.

Notice that these simulations were run at a specific
point in the operating region. This point will be referred
to as the “build point” of the BBN. This point can then be
used to differentiate between BBNs which were designed
for the same faults and the same engines, but were
constructed at different points in the operating region. The
reasons for this distinction will be made clear in later
sections.

6. Distribution of BBNs to Cover Operating Regions

Early tests showed that these BBNs performed very
well at the build points. That is, at the point in the
operating regime where the BBN was designed, it could
correctly identify the faults. However, the effects of faults
are not constant over the entire operating region. The
change in engine outputs from a fault at 35,000 feet is
distinct from the change in engine outputs due to the same
fault at 28,000 feet. Therefore, a single BBN designed to
identify these faults at 35,000 would not be able to
identify these same faults at a lower altitude. Therefore,
multiple BBNs are needed to cover the areas of the
operating space that are of interest. A simple scheduling
algorithm can be used to switch between appropriate
BBNs based on the operating condition.

7. Results for Six BBN Network

The initial testing of the BBN systems showed that fault
detection was considerably easier in the cruise region as
opposed to the climb and takeoff regions. For this reason, it
was decided that all testing of the sensor-based BBN systems
would be done on the cruise region and results, if favorable,
would then be applied to the climb and takeoff regions. Early
studies had shown that 2,000 ft. changes in elevation at cruise
were enough to cause problems in the BBN identification
system. For this reason, the cruise region was subdivided into
six sub-regions (from 27,000 ft. to 39,000 ft.), where in each
the mach varies between 0.75 and 0.8, and the throttle
between 60 and 62. These ranges encompass the variations
about the build point used by the scheduling algorithm to
select the BBNs. The nominal values used as build points for
each particular BBN are in the center of each of the sub-
regions. .

Two types of tests were performed on every complete set
of BBNs. The first set of tests is referred to as the “baseline”
test. In this test, the BBNs are provided with the data with
which they have been built. That is, they are excited with the
same data for which they have been designed. This test is
done for two reasons. The first is to provide a secondary
check to be sure that no input mistakes were made during the
design process. The second, and more important reason, is to
check how well the BBN operates with data for which it has
been built. The rational is that if the BBN is unable to
correctly identify a fault at the build point for which it is
designed, it will not be able to identify this fault at an
operating point away from the build point.

The second type of test for each BBN is referred to as the
“envelope” test. In this test, the BBN is tested with data from
random operating points within the variations given above.
This test is intended to test how well the BBNs perform when
perturbed away from the build points. It is intended as a
simulation of how well the system will perform in actual use
where it is highly improbable that the engine will fly exactly
through the build point.

In the six BBN system, the baseline results over all seven
regions are as shown in Table 2. In these results, a correct
identification occurs when the BBN indicates that at least one
fault has occurred with a probability of greater than 0.85. In
that case, correct identification implies that the system returns
the result P(AIB)>0.85. A correct isolation result occurs when
only the correct fault is indicated.

Table 2: Six BBN system baseline test results

Performance Measure Percentage

Correct |dentification 97.92%
Correct Isolation 97.92%

Incorrect Identification 2.08%
No Identification 2.08%

These results show that the six BBNs worked quite well at
the points at which they have been designed. This is not a



surprising result, but it is necessary to establish that the
BBN:s are performing as they should.

Following a successful baseline test, the next step is to
perform an envelope test to determine how well the BBNs
operate within their given region. In this test, random
operating points from within the available region are
chosen for testing purposes. The six BBN envelope test
results are given in Table 3.

Table 3: Envelope test results for six cruise sub-regions

Correct Correct | Incorrect No
Identification | Isolation |Identification|Identification
CR1 82.6% 59.2% 9.9% 7.5%
CR2| 71.8% 51.5% 14.0% 14.3%
CR3] 70.5% 35.3% 19.1% 10.4%
CR4]| 79.6% 47.0% 13.6% 6.9%
CR5] 81.0% 58.4% 13.7% 5.3%
CR6| 85.1% 46.3% 9.3% 5.6%
Total]l 78.4% 49.6% 13.3% 8.3%

Based upon the results of dividing the cruise region
into six sub-regions, it is apparent that the system is not
achieving the desired performance results. Since the
baseline results were quite good, it is certain that the error
is not coming from some design flaw in the BBNs.
Therefore, the error must be coming from the variation in
engine outputs due to changes in operating conditions. As
these changes are not part of the designed system, the
only way to compensate for these variations is to decrease
the size of the regions that each individual BBN must
cover. This reduction in the size of the region around the
build point makes it necessary to increase the number of
BBNs to maintain the coverage of the operating regions.

7. Results for 24 BBN Cruise Network

Based upon the results of the six BBN system, the next
step was to determine the number of BBNs needed to
increase the performance to an acceptable level. To
decide how many sub-regions were needed for good
performance, some correlation studies were performed. In
these studies, a single fault was introduced into the engine
model. This model was then flown at random operating
points within the regions being studied. This test was then
performed for each of the 16 faults in the test set. The
results of these simulations were tested for correlation in
each of the model outputs using MATLAB. The goal of
these correlation studies was to show how strongly each
output sensor was correlated to the operating condition. If
the output sensors were only weakly correlated to
operating condition within a region, then only a single
BBN would be needed to cover this region as the fault
signature would stay relatively unchanged. However, in
the case of strong correlation, the size of the BBN
operating region would need to be reduced.

The correlation results were used to identify that the
sensors in use are most strongly correlated to altitude. It was
for this reason that the cruise region was divided into six
distinct altitude blocks. However, the correlation results also
showed that the sensors were somewhat correlated to the
throttle setting of the engine as well as the mach value. The
original hope was that these correlations would not be strong
enough to effect the final results. However, it is apparent
from the results of the six sub-region system that the
correlations are large enough to have an effect. To account
for one of these correlations, additional sub-regions were
added to split the throttle angle axis into two divisions. This
created 12 sub-regions in cruise. However, results for this
system were also not favorable. Therefore, an additional
division in the mach axis was added to increase the number
of regions to 24. Baseline results for this new system were
similar to those for six sub-regions. Envelope test results are
given by individual fault rather than region in Table 4. i

Table 4 — Envelope test results for 24 cruise sub-regions

Fault Correct. Corrgct Incpyrec_t N_o ‘
Identification| Isolation |!dentification|Identification
1 99.96% 49.33% 0.04% 0.00%
2 100.00% | 68.71% 0.00% 0.00%
3 100.00% | 79.67% 0.00% 0.00%
4 24.84% 10.71% 30.13% 45.04%
5 99.87% 76.46% 0.17% 0.00%
6 82.04% - | 25.58% 13.58% 4.38%
7 100% 61.83% 0.00% 0.00%
8 72.88% 27.38% 25.17% 1.96%
9 87.05% 80.63% 2.79% 10.17%
10 73.38% 64.63% 2.88% 23.75%
11 21.37% 16.04% 14.04% 64.58%
12 65.66% 65.58% 15.71% 18.63%
13 95.17% 75.38% 4.33% 0.50%
14 97.33% 86.79% 2.50% 0.17%
15 84.96% 74.88% 7.71% 7.33%
16 94.63% 69.92% 4.79% 0.58%

From these results, the decision was made to create no further
sub-regions within the cruise region. By analyzing the results
in Table 4, it is apparent that the majority of the errors are
introduced by only a few of the faults. The majority of the
faults are identified with very few errors. However, the poor
results over some of the faults skew the results downward.

To further refine the degree to which distinction could be
brought out of the results, the faults were divided into three
groups. The first group of faults are those faults for which
identification was performed very well. This group includes
the nine faults for which the BBN system performed the best,
that is, faults in the set {i, 2, 3, 5, 7, 9, 13, 14, 16]. The
second group of faults are those faults for which
identification was fair but not as good as the faults in Group
1. The four faults in Group 2 are {6, 8, 10, 15]. The final
group, the set [4, 11, 12], includes the three faults over which
the BBNs performed very poorly. These three faults
introduced 62% of the error for the total system. By



separating these faults out, the overall results are much
better. The results for these groups are shown in Table 5.

Table 5 -Envelope test results for 24 sub-regions by group

the confidence in a fault identification regardless of the level
of deterioration.

Table 7 - Deteriorated engine envelope results by group

Correct Correct Incorrect No Correct Correct Incorrect No
Group Identification | Isolation |ldentificationj!dentification Group Identification| Isolation |ldentification|identification
1 97.11% 72.08% 1.63% 1.27% 1 93.39% 63.19% 4.29% 2.31%
2 78.31% 48.11% 12.33% 9.35% 2 77.34% 41.19% 19.60% 3.05%
3 37.29% 30.78% 19.96% 42.75% 3 22.26% 15.10% 18.92% 58.82%

8. Engine Deterioration Studies

All results reported to this point have been for a
hypothetical ideal engine directly off the assembly line. In
real world operations, an engine will not remain in this
state. In fact, it is more likely that the engine in which a
fault occurs will be one which has been in service for
some length of time. Even new engines off the assembly
line will have some small variation from the
specifications because of the imperfections in the
manufacturing process. Therefore, the next step would be
to examine the effects of these variations on the BBN
system.

Deterioration levels were obtained from GE to
represent the worst levels of deterioration possible in an
actual working engine. Any engine which has deteriorated
below these levels would be taken out of operation to be
rebuilt or retired. Simulations were run of these
deteriorated engines and the results were fed through the
24 BBN system designed above. The results are given in
Tables 6 and 7.

Table 6 ~ Deteriorated engine envelope results

Fault qufect' Corrept Incp‘rrec_t !\{o )
Identification| Isolation |ldentification | Identification
1 99.96% 43.75% 0.04% 0.00%
2 100.00% | 59.46% 0.00% 0.00%
3 100.00% | 69.67% 0.00% 0.00%
4 22.13% 7.33% 30.42% 47.46%
5 99.88% 63.04% 0.13% 0.00%
6 83.33% 24.00% 15.29% 1.38%
7 100.00% | 45.96% 0.00% 0.00%
8 67.29% 16.79% 31.75% 0.96%
9 78.38% 76.88% 4.50% 17.13%
10 83.38% 65.29% 14.54% 2.08%
11 19.17% 15.00% 12.79% 68.04%
12 25.50% 22.96% 13.54% 60.96%
13 93.58% 77.63% 6.33% 0.08%
14 80.75% 75.21% 18.17% 1.08%
15 75.38% 58.67% 16.83% 7.79%
16 88.00% 57.08% 9.46% 2.54%

It might be expected that the results for these
deteriorated engines would be appreciably worse than
those for non-deteriorated engines. Surprisingly, the
results for the cruise region are only slightly reduced from
those for non-deteriorated engines. This result increases

9. Conclusion

This work has shown that BBN systems can be used for
fault identification in jet turbine aircraft engines. By careful
scheduling of individual BBNs across the operating space, a
reasonably high level of accuracy can be obtained. The
limiting factor is the number of BBNs the user is w1llmg to
use to obtain a desired level of accuracy.

Since the system of BBNs designed for non- detenorated
engines performed well in the presence of deterioration,
reasonable confidence can be placed in a fault identification
from the system. In addition, if a moderate level of
deterioration is used for the design point of the BBN network,
then the system will represent a more typical engine in
service and the results will be between those shown for non-
deteriorated and deteriorated engines.
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I. Abstract

This project considers the combined controller design challenge of Idle-Speed Control (ISC)
and Air Fuel Ratio (AFR) Control through State Feedback Control (SFC) and Sliding Mode Con-
trol (SMC), respectively. The mathematical engine model is a three input, two output nonlinear
event-based representation of a 4.6L Ford V8 engine. The analysis and design is conducted in the
continuous crank angle domain. The plant inputs are air mass flow rate, spark advance, and injected
fuel mass fow rate. The plant outputs are engine speed and measured equivalence ratio.

~

II. Literature Review

The first challenge in most control problems is to describe the appropriate physical phenomena
with mathematical models that are accurate enough to give the control scheme a good platform
upon which to achieve the desired objectives. Most of the inertial, air, fuel, and mixture dynamics
discussed in this paper are thoroughly analyzed in [3]. Likewise, most of the state-variable linear
control techniques applied to this problem are found in [2]. The fundamental AFR principles and
challenges discussed in [1] are helpful in understanding typical control techniques applied to this
tracking problem. Especially when applied directly to a nonlinear model, SMC has very good
disturbance rejection properties. This paper focuses on using SMC to reject tip-in and tip-out
disturbances for the AFR created by the SFC inputs that are intended to reject a 15 Nm load
torque disturbance in the ISC problem. Fortunately, much of the required SMC design methodology
and theory is found in [4],[5],[6].

III. Modeling and Design Methods

A. Non-Linear Model Equations

The engine dynamics are represented by the following non-linear continuous time equations.

vV RTp, .

dpm + mwpm = v Mg, th (1)
. _ and
Mae = T RT, 0™ @
dw
JE{ +Bw=rT (3)
T = K,’pm(t —tr) + K5 (4)
dn 1
-—T% = T—f(—rhff + ‘\'Ihfi) (5)
mpy = (1= X)my (6)
e = Mfe + iy g {7)
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Om = Pe (t - tt) (10)
¢ = it —te) (11)
where
1, is volumetric efficiency
pm is manifold pressure in IV /m?
3

V, is engine displacement volume in m
V, is manifold volume in m3
R is the air gas constant

T, is the manifold air temperature in K

Tha th is mass air flow rate through the trottle in kg/sec

w is engine speed in rad/sec

Thge is mass air flow rate to the engine cylinders

J is the total inertia of the engine and loads

B is the coefficient of damping friction

T; is indicated torque

t. is the torque delay involved in the combustion process

§ is the spark advance in degrees

K converts spark advance into a spark influence torque
my is mass of fuel evaporating from the fuel film

m . is mass of fuel entering engine cylinders

my, is mass of fuel vaporized directly into cylinders

my; is mass of fuel injected

7y is the fuel evaporation time constant

X is the percentage of injected fuel entering the fuel film

; is the equivalence ratio of the inducted mixture

¢. is the equivalence ratio at the exhaust valve

®n is the equivalence ratio measured by (UEGO) sensor

7., is the (UEGO) sensor time constant

t. is the cycle delay

t, is the transport delay from the exhaust valve to the (UEGO) sensor
t4 is the total delay (tqg = tc + tt)

Because many of the system delays inherent to the internal combustion engine are directly asso-
ciated with the engine cycles, it is more natural to use an event-based method to model the dynamic
equations. Therefore, the time-domain equations are transformed to the crank angle domain. These
nonlinear equations are used to model the engine during the AFR SMC design and for testing of
the combined AFR and ISC scheme.

dpm T Vu RT,, dman

—— + = Pm = T — 2

% T T Y, T (12)
dma. Ml (13)
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dw

dw - 1
Jd6w+Bw T (14)
7= Kepm(0 — 0:) + K56 (15)

d?myy 1 dmy dmy;
== (——H +X—- 1
gz rf< a8 +Xd9) (16)

. dmyse . dmygi | dmgs
@ — Y% e (17)

Ve o _ (AN dmse
¢147rRTmpm_<F>s df (18)

dém

Tm%-w + Pm = (251(9 - Qd) (19)

B. Open Loop Analysis

The linearized system equations contain many nominal constant values. These nominal constants
are determined through an open loop simulation of the non-linear theta-domain engine model. The
spark advance is set to zero. The fuel mass flow input is calculated to be the air mass flow multiplied
by (F/A),. This assures a stoichiometric input mixture. Next, the air mass flow is set to a constant
and the resulting steady-state engine rpm is observed. This air mass flow constant is then calibrated
by trial and error until a steady-state engine rpm of 740 rpm is achieved. Finally, the desired nominal
constants are determined from the final simulation having a 740 rpm steady-state.
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Figure 1: Open loop pulse disturbance tests

Open loop tests are performed to assess the influence of the ISC inputs (air mass flow and spark
advance) on the AFR output and the influence of the AFR control input (fuel mass flow) on the idle
speed. This is a special point of interest since the proposed ISC and AFR control are autonomous



with repect to each other. As shown in Figure (1), if a 5% from nominal air mass flow pulse distur-
bance input is applied, then the equivalence ratio ¢, decreases to approximately 0.952. Similarly,
if a 5 degree spark advance pulse disturbance is applied, then ¢,, remains virtually unchanged as
shown in Figure (1). For a 15Nm torque load pulse disturbance, the engine speed decreases signifi-
cantly to 500 rpm as shown in Figure (1). The engine rpm remains virtually unchanged when a 5%
from nominal fuel mass flow pulse disturbance is introduced as shown in Figure (1).

C. Non-Linear Air/Fuel Ratio Control
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Figure 2: The non-linear engine model with ISC and AFR control.

First, the non-linear time equations (1) through (11) are reformulated to yield eight non-linear
continuous crank angle domain equations (12) through (19). Next, open loop pulse input tests are
conducted to observe open loop response and to establish constants corresponding to nominal values.

Evaluating the results of the open loop AFR ¢, response, one can see that the equivalence ratio
dropped by almost 5%, whereas the goal is to keep ¢, within 0.5% of @res in order to maximize
the efficiency of the catalytic converter. To further increase the efficiency of the catalytic converter,
it is desired to have the AFR oscillate between lean and rich. Therefore, because of this inherent
feature and because the fuel and mixture dynamics are nonlinear, a sliding-mode controller is used
to achieve the performance specifications for the AFR portion of the problem.

There are two items that need to be selected for the basic sliding-mode controller design, the
sliding surface S and the gain m. Depending on which side of the line the present output value resides,
the sliding surface acts as a switching line to decide which of two control actions to implement. In
this case. it is desired to track a reference equivalence ratio. Therefore the following sliding surface
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Figure 3: SMC gain comparison.
is defined.
S= ¢’m - ¢ref (20)

Notice that if ¢ > Preg, then S > 05 if ¢ < Pref, then S < 0. Once it is determined that the
measured output is above or below the chosen boundary, this positive or negative value is input into
the signum function. Thus, plus or minus one is multiplied by the gain m to establish the value of
the feedback portion of the control input. The gain establishes the speed of the response back to the
desired reference. The higher the gain, the more significance the controller places on the decision
that the measured output is away from the desired reference. This positive or negative gain term
is then subtracted from the feedforward portion of the control. In this situation, since the control
input for the AFR control is my;, this feedforward term functions as a nominal 7s; to be added.
The gain term adds knowledge of the output to the control by adding or subtracting the gain from
the nominal rins;. The following equation is the total sliding-mode control input.

dmgae
df

=73
(%),
To understand the effects of equation (21), evaluate a simple case. If the AFR mixture is rich,

(i.e. ¢m > 1) then S > 0 and less than nominal fuel is injected into the cylinder as a result of

the control. To determine the proper controller gain. various m-values are selected and their effects

are compared. Because the feedback term is subtracted from the nominal feedforward term m is
calculated using the following method.

~ msign (S) (21)

m= ’nfactorrnfca (22)



Figure (3) shows the results of three different m-values implemented, m € {0.001,0.01,0.1},
using riy; to control ¢, which is one of the ouputs of the nonlinear engine model experiencing
g sn and spark pulse disturbances. The following equations explain why as m 4.0 increases the
response of ¢, is faster and has a higher bound on its limit cycle behavior.

u = mye, — msign(S) (23)

u = my. o (24)

Because the control is directly proportional to a = (1 & myfactor), the higher the mgqctor, the
more violent the control input becomes. An mfqctor = 0.01 is chosen to strike a balance between the
speed of the AFR response and the bound on the oscillations about stoichiometry. The nonlinear
engine model used in the design of the SMC is shown in Figure (2). Also in Figure (2) is the diagram
of the SMC which uses states from the nonlinear subsystem to control ¢,,, with rig;. (This diagram
also represents the full integration of both the SMC and the SFC. This integration is discussed later).

D. Linearized Model Equations

The linearized perturbation crank angle domain equations (25) through (30) are derived from
equations (12) through (19). These equations are used to model the engine during the state feedback
ISC design.

dpm 7wV o RTy dmg in
a0 " v, P TV, db (25)
dw _ 1 T0
W Tog TR (26)
7i = K;pm (6 — 0;) + K56 (27)
dszf 1 dmff dmfi
w0-——d02 +mgrow = E <__d0 +X-———-—-d€ > (28)
) and _ é L _ dmfi dmff mMfeo
S RTn (F)s <me <(1 =+ P 29)
ddm
Gm = ¢z(9 —84) = T WOW + Gmow (30)

E. Linear Idle Speed Control

The first step for the design of state feedback control for ISC is the approximation of the two
system delays 6, and 4. These are approximated by first order Padé approximations.

1— %
Pals) = T3 (31)

where Py(s) and T, are the transfer function and the approximated delay, respectively. The corre-
sponding state space equations are

dx 2
36_’_-5,;‘16+'L_A£+Bu (32)
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y=9—x—u=C:c+Du (33)
d
An approximation of the ficticious state within the Simulink transport delay block can be obtained
by solving for the state variable z in equation (33) thus yielding

z= %(yw):%(y—nu). (34)

Hence, this state can be obtained for simulation purposes by connections at the input u and output
of the delay block y (e.g. pm and pm (6 — 64)). The two derived states are then combined with the
original four system states for state feedback control.
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Figure 4: The linear perturbation model with state feedback control (shown with integral action).

The linear perturbation model with state feedback control is shown in Figure (4). The state
feedback matrix for SFC without integration action is determined through pole placement. The
initial determination of the poles is based on a previous ISC controller design for this plant. The

final pole selection is
= —0.4012£0.08341 s5 = —2.1988

= —(.2485%0.1218 s¢ = —3.2982

51,2

53.4

from which the following controller gain matrix is obtained through the use of the 'place’ command

in Matlab.

Ko = 5338¢ — 05 1.42le —05 —9.778¢ —06 1.354e + 03 —3.007e —04 —8.35le— 05
206 = | -8.7149 ~7.5047 9.6236 —7.972¢+08  97.9018 15.0666

The simulation of the closed loop system response with this controller is shown in the top row of
plots in Figure (5). The maximum excursion and steady-state error are approximately 7 rpm and 2
rpm, respectively.
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Figure 5: SFC Simulation. Top: without integrator. Bottom: with integrator.

Next, the state feedback design is modified to include integral action to eliminate steady-state
error as shown in Figure (4). The six states are augmented with a seventh state and s; = —0.5749
is selected as the seventh pole. The following gain matrix is obtained from the Matlab ’place’
command.

6.45¢ — 05 6.85¢—06 1.87e—06 1.53¢+03 —4.68¢—04 —1.7le—04 1.23e-— 05

Kwar=| _30979 21480 127418 1.19e+08  9.2536 3.4667 18.8791

The simulation of the closed loop system response with this controller is shown in the bottom row
of plots in Figure (5). The maximum excursion and steady-state error are approximately 4 rpm and
0 rpm, respectively.

IV. Results

Interestingly, even though the nonlinear AFR controller and the linear ISC controller are designed
separately, they are simultaneously incorporated around the nonlinear engine model with virtually
no changes to either controller. The only implementation consideration is that the SFC is designed
with a linearized perturbation model. Therefore, before the states are used for feedback, the nominal
state values are subtracted from the nonlinear model states. Then, before the SFC control inputs
are sent into the model, the perturbation control vector is added to a nominal input vector. This
procedure is seen clearly in Figure (2).

The results of the combined AFR/ISC controller, as shown in Figure (6), are quite good. The
control clearly rejects the torque load disturbance while maintaining the AFR within 0.5% of stoi-
chiometry. As expected, most of the ISC control is achieved through spark advance. In addition, the
AFR control performed well while experiencing tip-in and tip-out disturbances caused by the ISC
control inputs. After seeing the results of the open-loop disturbance tests. where the spark advance
disturbance has very little effect on AFR control, one can predict these well-behaved responses.
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Figure 6: Final simulation results. Top: inputs. Bottom: outputs.

The most interesting result is that the 7, ¢ input has so many spikes. This phenomenom is a
direct result of the SMC purposely introducing rapid oscillations about ¢, = 1. These oscillations
introduce oscillations in many of the states, which are in turn, multiplied by a gain matrix. Because
the spikes are not as noticeable in the spark advance input, it appears that the gain vector associated
with the spark advance is smaller, on a percentage basis, than the gain vector associated with the
Mg th- It can be shown that as the gain in the SMC is reduced, the oscillations in AFR become slower
and smoother, which in turn greatly reduces the spikes in the 7, ¢ input. Thus, there is a trade-off
between fast AFR control and smooth rig ¢, for ISC control. Supposing that the idle-bypass valve
is a low pass filter, one would expect minimal operational problems due to the spikes. Therefore,
the oscillations created by the SMC are beneficialsince they promote catalytic converter efficiency.

V. Conclusion

Since the plant is inherently event-based. the engine model is first converted to the crank angle
domain. Secondly, an open-loop analysis of the plant model is performed. Next, SMC is designed to
track a reference AFR. Then, ISC is achieved by state feedback control with integral action. Finally,
the two controllers are implemented and tested on the non-linear plant model.

Analysis of air mass flow and fuel mass flow units reveals that there exists some inconsistencies
with respect to constants in the equations. Specifically, the ratio of g th, O i, does not corre-
spond to expected values for air-to-fuel ratio. Additional information with respect to units could
lead to a resolution of this issue. Equations (1). (12), and (25) are considered the most probable
sources of the apparent disparity since they contain 1, ¢h,-



Simulations provide interesting insights into the dynamics relating the inputs to the outputs.
For example, the ISC air mass flow input significantly affects the measured equivalence ratio. In
addition, the spark advance and fuel mass flow inputs have virtually no affect on the equivalence
ratio and the engine idle speed, respectively. A 15 Nm torque load disturbance considerably alters
steady-state engine idle speed. In addition to the above effects, state oscillations occur when the
AFR SMC is implemented. Analysis of the simulink diagram and consideration of the dynamical
equations confirm the simulation results.

This study of the impact of combining ISC with AFR control suggests future directions of study.
Although all design methods and simulation results within this paper are based on the assumption
that all states are available for feedback, observer based state feedback would be a viable method
since the system structure is observable. A potential modification of the controller proposed within
this paper would be to zero the gains of the artificial states, thus effectively reducing the system
dimension to four. Comparison of this modified design with a design approach that ignores the
system delays throughout the design procedure would be intriguing. Another direction for future
study would be to attempt to accomplish design specifications assuming greater restrictions on the
spark advance input. Finally, all of these previous approaches could be evaluated while using a
non-linear AFR sensor.
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